Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Bis(2-fluorobenzoato- $\kappa O$ )bis(pyridin-2amine- $\kappa N^1$ )zinc(II)

#### Jian-Quan Wang, Ya-Wen Zhang and Lin Cheng\*

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: cep02chl@yahoo.com.cn

Received 3 July 2009; accepted 15 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.043; wR factor = 0.131; data-to-parameter ratio = 13.9.

In the title compound,  $[Zn(C_7H_4FO_2)_2(C_5H_6N_2)_2]$  or  $[Zn(fa)_2(2-pa)_2]$  (Hfa is 2-fluorobenzoic acid and 2-pa = pyridin-2-amine), the asymmetric unit contains one  $Zn^{II}$ cation, two fa ligands and two 2-pa ligands, wherein the Zn<sup>II</sup> displays a distorted tetrahedral geometry, being surrounded by two monodentate fa ligands with Zn-O distances of 1.962 (2) and 1.976 (3) Å, and by two 2-pa ligands with distances involving pyridyl N atoms of 2.069 (2) and 2.056 (2) Å. The F atoms of the fa ligands are equally disordered over two sites, viz. the 2- and 6-positions of fa. The mononuclear complex molecules are joined by  $N-H \cdots O$ and  $N-H \cdot \cdot \cdot F$  hydrogen bonds into a two-dimensional layer, which is further constructed into a three-dimensional supramolecular network by weak C-H···F interactions and effective  $\pi - \pi$  stacking [centroid-centroid separation of 3.74 (3) Å] between the interlayer aromatic rings and adjacent heterocycles.

#### **Related literature**

For related structures, see: Darensbourg *et al.* (2002). For crystal engineering, see: Fyfe & Stoddart (1997).



### Experimental

#### Crystal data

 $\begin{bmatrix} Zn(C_7H_4FO_2)_2(C_5H_6N_2)_2 \end{bmatrix}$   $M_r = 531.83$ Monoclinic,  $P2_1/c$  a = 9.1259 (7) Å b = 11.1020 (9) Å c = 24.5707 (17) Å  $\beta = 108.048$  (2)°

#### Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2000)  $T_{\rm min} = 0.772, T_{\rm max} = 0.828$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 334 parameters $wR(F^2) = 0.131$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.50$  e Å<sup>-3</sup>4645 reflections $\Delta \rho_{min} = -0.28$  e Å<sup>-3</sup>

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$     | D-H            | $H \cdot \cdot \cdot A$ | $D \cdots A$                  | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------|----------------|-------------------------|-------------------------------|--------------------------------------|
| $N2-H2A\cdots O3$               | 0.86           | 2.06                    | 2.881 (3)                     | 159                                  |
| $N2-H2B\cdotsO1^{i}$            | 0.86           | 2.03                    | 2.864 (3)                     | 162                                  |
| $N4-H4B\cdots O2$               | 0.86           | 2.02                    | 2.838 (4)                     | 159                                  |
| $N4-H4C\cdots O4^{ii}$          | 0.86           | 2.03                    | 2.884 (4)                     | 175                                  |
| $N4 - H4B \cdot \cdot \cdot F2$ | 0.86           | 2.52                    | 3.143 (5)                     | 130                                  |
| $C5-H5A\cdots F4^{iii}$         | 0.93           | 2.34                    | 3.147 (6)                     | 144                                  |
| $C20-H20A\cdots F3^{iv}$        | 0.93           | 2.47                    | 3.244 (10)                    | 141                                  |
| Symmetry codes: (               | i) $-x + 2, -$ | -y, -z + 1; (           | ii) $-x + 1, y - \frac{1}{2}$ | $, -z + \frac{1}{2};$ (iii)          |

V = 2366.9 (3) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.25 \times 0.20 \times 0.18 \; \mathrm{mm}$ 

13150 measured reflections

4645 independent reflections

3838 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.09 \text{ mm}^-$ 

T = 293 K

 $R_{\rm int} = 0.016$ 

Z = 4

 $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2};$  (iv) -x + 1, -y, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2177).

#### References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Darensbourg, D. J., Wildeson, J. R. & Yarbrough, J. C. (2002). *Inorg. Chem.* 41, 973–980.

Fyfe, M. C. T. & Stoddart, J. F. (1997). *Acc. Chem. Res.* **30**, 393–401. Sheldrick, G. M. (2000). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, m950 [doi:10.1107/S1600536809027779]

## Bis(2-fluorobenzoato- $\kappa O$ )bis(pyridin-2-amine- $\kappa N^1$ )zinc(II)

### J.-Q. Wang, Y.-W. Zhang and L. Cheng

#### Comment

Recently, coordination compounds of  $d_{10}$  monovalent ions of the coinage metals have attracted much attention because of their interesting photophysical properties. In order to construct many novel and interesting metal-organic frameworks carboxylates have been used widely. Moreovere, supramolecular interactions such as hydrogen bonding and  $\pi$ - $\pi$  stacking interactions have important effects on crystal engineering (Fyfe & Stoddart, 1997). In this paper, we present the synthesis and crystal structural of a new coordination compound of  $d_{10}$  monovalent ion Zn(fa)<sub>2</sub>(2-pa)<sub>2</sub> (Hfa = 2-fluorobenzoic acid; 2-pa = pyridin-2-amine), (I).

The asymmetric unit of the title compound, contains a Zn<sup>II</sup> cation, two fa and two 2-pa ligands (Fig. 1). The Zn<sup>II</sup> ion in (I) is surrounded by two monodentate fa ligands with Zn—O coordinating distances 1.962 (2) and 1.976 (3) Å and two 2-pa ligands with distances involving pyridyl N atoms and Zn being 2.069 (2) and 2.056 (2) Å; the Zn<sup>II</sup> displays a distorted tetrahedral geometry with angles around Zn in the range 101.17 (10) - 137.12 (10)°. The other O-atoms of the fa ligands are at significantly longer distances from the Zn<sup>II</sup> ion (Zn1—O4 2.551 (3) and Zn1—O1 (2.781 (3)Å). The mononuclear complex (I) is joined into a two-dimensional layer by N—H···O type hydrogen-bonds; details have been provided in Table 1. The layers are further constructed in to a three-dimensional supramolecular network by rather weak C—H···F type interactions (C5···F4<sup>c</sup> 3.158 (2) and C20···F3<sup>d</sup> 3.256 (3) Å; symmetry codes: <sup>c</sup>, 1 - *x*, 1/2 + *y*, 1/2 - *z* and <sup>d</sup>, -*x*, -*y*, 1 - *z*) and effective  $\pi$ - $\pi$ stacking between the interlayer adjacent benzene rings and pyridyl rings with the centroid-centroid separation of 3.74 (3) Å. The F atoms of fa ligands in (I) are disordered over two sites, the 2- and 6-position of fa with equal site occupancy factors.

The crystal structures of a few Zn<sup>II</sup> benzoate complexes have been reported by Darensbourg *et al.*, (2002).

#### Experimental

A mixture of 2-fluorobenzoic acid (0.0280 g, 0.2 mmol), pyridin-2-amine(0.0188 g, 0.2 mmol), ZnSO<sub>4</sub>.7H<sub>2</sub>O (0.0285 g, 0.1 mmol) and H<sub>2</sub>O (8 ml) was heated in a 15-ml Teflon-lined autoclave at 393 K for 5 days, followed by slow cooling (5  $^{\circ}$  h<sup>-1</sup>) to room temperature. The resulting mixture was washed with water, and colorless block crystals were collected and dried in air [yield, 62% (32.4 mg) based on Zn<sup>II</sup>].

#### Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and N—H = 0.86 Å with  $U_{iso}(H) = 1.2U_{iso}(C/N)$ . The site occupancy factors of all F-atoms are given as 0.5 because of disordered position over two sites, the 2- and 6-position of fa.

**Figures** 



Fig. 1. Molecular structure of the title compound with 15% thermal ellipsoids.

Fig. 2. The three-dimensional supramolecular network of the title compound.

 $F_{000} = 1088$ 

 $\theta = 2.4 - 28.0^{\circ}$ 

 $\mu = 1.09 \text{ mm}^{-1}$ 

Block, colorless  $0.25 \times 0.20 \times 0.18 \text{ mm}$ 

T = 293 K

 $D_{\rm x} = 1.492 {\rm Mg m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 785 reflections

### Bis(2-fluorobenzoato- $\kappa O$ )bis(pyridin-2-amine- $\kappa N^1$ )zinc(II)

Crystal data [Zn(C<sub>7</sub>H<sub>4</sub>FO<sub>2</sub>)<sub>2</sub>(C<sub>5</sub>H<sub>6</sub>N<sub>2</sub>)<sub>2</sub>]  $M_r = 531.83$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 9.1259 (7) Å b = 11.1020 (9) Å c = 24.5707 (17) Å  $\beta = 108.048$  (2)° V = 2366.9 (3) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker SMART APEX CCD<br>diffractometer                        | 4645 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 3838 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.016$                  |
| <i>T</i> = 293 K                                               | $\theta_{\text{max}} = 26.0^{\circ}$   |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 2.0^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 2000) | $h = -10 \rightarrow 11$               |
| $T_{\min} = 0.772, T_{\max} = 0.828$                           | $k = -13 \rightarrow 11$               |
| 13150 measured reflections                                     | $l = -30 \rightarrow 26$               |
|                                                                |                                        |

#### Refinement

Refinement on  $F^2$ 

Secondary atom site location: difference Fourier map

| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                           |
|----------------------------------------------------------------|------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.043$                                | H-atom parameters constrained                                                      |
| $wR(F^2) = 0.131$                                              | $w = 1/[\sigma^2(F_o^2) + (0.077P)^2 + 0.6445P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.04                                                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                |
| 4645 reflections                                               | $\Delta \rho_{\text{max}} = 0.50 \text{ e} \text{ Å}^{-3}$                         |
| 334 parameters                                                 | $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$                           |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                        |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|     | x           | У            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ | Occ. (<1) |
|-----|-------------|--------------|---------------|---------------------------|-----------|
| Zn1 | 0.69105 (4) | -0.07190 (3) | 0.378555 (11) | 0.06568 (15)              |           |
| 01  | 0.9562 (3)  | 0.0314 (3)   | 0.36588 (9)   | 0.1045 (8)                |           |
| O2  | 0.7767 (3)  | -0.0875 (2)  | 0.31487 (9)   | 0.0835 (6)                |           |
| O3  | 0.6376 (3)  | 0.06015 (18) | 0.42292 (10)  | 0.0884 (7)                |           |
| O4  | 0.5834 (4)  | 0.1323 (3)   | 0.33750 (11)  | 0.1169 (9)                |           |
| N1  | 0.8367 (2)  | -0.1820 (2)  | 0.43970 (9)   | 0.0634 (5)                |           |
| N2  | 0.8527 (3)  | -0.0615 (2)  | 0.51811 (10)  | 0.0716 (6)                |           |
| H2A | 0.7811      | -0.0165      | 0.4967        | 0.086*                    |           |
| H2B | 0.8928      | -0.0447      | 0.5538        | 0.086*                    |           |
| N3  | 0.4880 (2)  | -0.1672 (2)  | 0.35345 (9)   | 0.0638 (5)                |           |
| N4  | 0.5189 (4)  | -0.2413 (3)  | 0.27024 (11)  | 0.0985 (9)                |           |
| H4B | 0.6070      | -0.2060      | 0.2786        | 0.118*                    |           |
| H4C | 0.4860      | -0.2826      | 0.2392        | 0.118*                    |           |
| C1  | 0.9007 (3)  | -0.0286 (3)  | 0.32286 (11)  | 0.0658 (6)                |           |
| C2  | 0.9760 (3)  | -0.0354 (3)  | 0.27689 (12)  | 0.0663 (7)                |           |
| C3  | 1.1117 (4)  | 0.0251 (3)   | 0.28201 (18)  | 0.0943 (10)               |           |
| H3A | 1.1558      | 0.0718       | 0.3144        | 0.113*                    | 0.50      |
| F1  | 1.1788 (7)  | 0.0903 (6)   | 0.3380 (3)    | 0.155 (2)                 | 0.50      |
| C4  | 1.1843 (5)  | 0.0177 (5)   | 0.2398 (3)    | 0.1265 (18)               |           |
| H4A | 1.2753      | 0.0594       | 0.2435        | 0.152*                    |           |
| C5  | 1.1190 (7)  | -0.0514 (6)  | 0.1936 (3)    | 0.136 (2)                 |           |
| H5A | 1.1673      | -0.0575      | 0.1655        | 0.163*                    |           |
|     |             |              |               |                           |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C6   | 0.9885 (6)  | -0.1112 (5) | 0.18654 (18) | 0.1150 (14) |      |
|------|-------------|-------------|--------------|-------------|------|
| H6A  | 0.9461      | -0.1573     | 0.1538       | 0.138*      |      |
| C7   | 0.9163 (4)  | -0.1044 (3) | 0.22799 (13) | 0.0822 (9)  |      |
| H7A  | 0.8255      | -0.1471     | 0.2231       | 0.099*      | 0.50 |
| F2   | 0.7836 (4)  | -0.1724 (4) | 0.21912 (14) | 0.0941 (11) | 0.50 |
| C8   | 0.5867 (3)  | 0.1415 (3)  | 0.38668 (13) | 0.0768 (8)  |      |
| C9   | 0.5172 (3)  | 0.2517 (3)  | 0.40796 (12) | 0.0707 (7)  |      |
| C10  | 0.4409 (5)  | 0.2449 (4)  | 0.44744 (17) | 0.1011 (11) |      |
| H10A | 0.4357      | 0.1708      | 0.4644       | 0.121*      | 0.50 |
| F3   | 0.4654 (14) | 0.1351 (9)  | 0.4726 (4)   | 0.224 (4)   | 0.50 |
| C11  | 0.3718 (6)  | 0.3414 (5)  | 0.4633 (2)   | 0.1287 (17) |      |
| H11A | 0.3202      | 0.3320      | 0.4902       | 0.154*      |      |
| C12  | 0.3779 (5)  | 0.4498 (5)  | 0.4402 (2)   | 0.1193 (15) |      |
| H12A | 0.3288      | 0.5154      | 0.4505       | 0.143*      |      |
| C13  | 0.4567 (5)  | 0.4637 (4)  | 0.4015 (2)   | 0.1106 (13) |      |
| H13A | 0.4655      | 0.5390      | 0.3862       | 0.133*      |      |
| C14  | 0.5223 (4)  | 0.3637 (3)  | 0.38576 (17) | 0.0946 (10) |      |
| H14A | 0.5730      | 0.3728      | 0.3585       | 0.114*      | 0.50 |
| F4   | 0.6067 (6)  | 0.3817 (4)  | 0.3530 (2)   | 0.1135 (15) | 0.50 |
| C15  | 0.8819 (4)  | -0.2827 (3) | 0.41838 (13) | 0.0803 (8)  |      |
| H15A | 0.8346      | -0.3002     | 0.3799       | 0.096*      |      |
| C16  | 0.9906 (4)  | -0.3591 (3) | 0.44900 (17) | 0.0921 (9)  |      |
| H16A | 1.0179      | -0.4272     | 0.4323       | 0.111*      |      |
| C17  | 1.0612 (4)  | -0.3324 (3) | 0.50709 (16) | 0.0888 (9)  |      |
| H17A | 1.1377      | -0.3827     | 0.5296       | 0.107*      |      |
| C18  | 1.0180 (3)  | -0.2340 (3) | 0.53020 (13) | 0.0768 (8)  |      |
| H18A | 1.0644      | -0.2162     | 0.5687       | 0.092*      |      |
| C19  | 0.9016 (3)  | -0.1578 (2) | 0.49576 (10) | 0.0606 (6)  |      |
| C20  | 0.4016 (4)  | -0.1603 (3) | 0.38926 (13) | 0.0765 (7)  |      |
| H20A | 0.4384      | -0.1141     | 0.4223       | 0.092*      |      |
| C21  | 0.2633 (4)  | -0.2177 (3) | 0.37954 (17) | 0.0867 (9)  |      |
| H21A | 0.2080      | -0.2120     | 0.4055       | 0.104*      |      |
| C22  | 0.2084 (4)  | -0.2842 (3) | 0.32992 (18) | 0.0908 (10) |      |
| H22A | 0.1143      | -0.3238     | 0.3218       | 0.109*      |      |
| C23  | 0.2914 (4)  | -0.2918 (3) | 0.29318 (14) | 0.0833 (9)  |      |
| H23A | 0.2541      | -0.3366     | 0.2598       | 0.100*      |      |
| C24  | 0.4341 (3)  | -0.2322 (2) | 0.30510 (12) | 0.0692 (7)  |      |
|      |             |             |              |             |      |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|-------------|-------------|--------------|---------------|--------------|---------------|
| Zn1 | 0.0722 (2)  | 0.0778 (2)  | 0.04154 (19) | -0.01443 (14) | 0.00970 (14) | -0.00021 (12) |
| 01  | 0.1209 (19) | 0.1082 (17) | 0.0622 (13)  | -0.0016 (15)  | -0.0042 (12) | -0.0207 (12)  |
| O2  | 0.0868 (14) | 0.1085 (16) | 0.0585 (11)  | -0.0235 (12)  | 0.0275 (10)  | -0.0056 (10)  |
| O3  | 0.1029 (16) | 0.0703 (13) | 0.0712 (13)  | -0.0056 (10)  | -0.0036 (12) | 0.0099 (9)    |
| O4  | 0.143 (2)   | 0.129 (2)   | 0.0806 (17)  | 0.0444 (19)   | 0.0377 (16)  | 0.0251 (16)   |
| N1  | 0.0669 (12) | 0.0705 (13) | 0.0498 (11)  | -0.0109 (10)  | 0.0136 (9)   | 0.0004 (9)    |
| N2  | 0.0803 (15) | 0.0780 (15) | 0.0471 (11)  | -0.0004 (11)  | 0.0059 (11)  | -0.0008 (10)  |

| N3  | 0.0636 (12) | 0.0679 (13) | 0.0518 (11) | -0.0068 (10) | 0.0061 (9)   | 0.0010 (9)   |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N4  | 0.0970 (19) | 0.125 (2)   | 0.0697 (16) | -0.0311 (17) | 0.0199 (14)  | -0.0357 (16) |
| C1  | 0.0700 (16) | 0.0686 (15) | 0.0487 (13) | 0.0060 (13)  | 0.0035 (11)  | 0.0076 (12)  |
| C2  | 0.0594 (14) | 0.0699 (15) | 0.0645 (15) | 0.0093 (12)  | 0.0116 (12)  | 0.0204 (13)  |
| C3  | 0.0734 (19) | 0.088 (2)   | 0.115 (3)   | 0.0021 (17)  | 0.0206 (19)  | 0.031 (2)    |
| F1  | 0.119 (4)   | 0.137 (5)   | 0.195 (7)   | -0.042 (3)   | 0.026 (4)    | -0.008 (4)   |
| C4  | 0.077 (2)   | 0.139 (4)   | 0.174 (5)   | 0.014 (3)    | 0.054 (3)    | 0.070 (4)    |
| C5  | 0.120 (4)   | 0.180 (6)   | 0.133 (4)   | 0.058 (4)    | 0.074 (4)    | 0.066 (4)    |
| C6  | 0.110 (3)   | 0.167 (4)   | 0.078 (2)   | 0.039 (3)    | 0.043 (2)    | 0.016 (3)    |
| C7  | 0.0791 (19) | 0.108 (2)   | 0.0595 (16) | 0.0155 (17)  | 0.0223 (14)  | 0.0096 (16)  |
| F2  | 0.085 (2)   | 0.134 (3)   | 0.0648 (19) | -0.030 (2)   | 0.0249 (17)  | -0.040 (2)   |
| C8  | 0.0685 (16) | 0.0784 (19) | 0.0685 (17) | -0.0052 (14) | -0.0005 (13) | 0.0200 (15)  |
| C9  | 0.0593 (14) | 0.0695 (17) | 0.0711 (16) | -0.0056 (12) | 0.0024 (12)  | 0.0139 (13)  |
| C10 | 0.131 (3)   | 0.086 (2)   | 0.091 (2)   | -0.030 (2)   | 0.042 (2)    | 0.0014 (19)  |
| F3  | 0.339 (13)  | 0.194 (8)   | 0.187 (7)   | -0.059 (8)   | 0.150 (8)    | -0.001 (6)   |
| C11 | 0.136 (4)   | 0.135 (4)   | 0.136 (4)   | -0.039 (3)   | 0.073 (3)    | -0.033 (3)   |
| C12 | 0.094 (3)   | 0.118 (4)   | 0.144 (4)   | 0.003 (2)    | 0.035 (3)    | -0.021 (3)   |
| C13 | 0.113 (3)   | 0.076 (2)   | 0.129 (3)   | 0.018 (2)    | 0.017 (3)    | 0.025 (2)    |
| C14 | 0.089 (2)   | 0.089 (2)   | 0.102 (2)   | 0.0056 (18)  | 0.0255 (19)  | 0.029 (2)    |
| F4  | 0.172 (4)   | 0.090 (3)   | 0.121 (3)   | -0.015 (3)   | 0.106 (3)    | 0.015 (2)    |
| C15 | 0.093 (2)   | 0.081 (2)   | 0.0661 (17) | -0.0059 (16) | 0.0231 (15)  | -0.0037 (15) |
| C16 | 0.092 (2)   | 0.080 (2)   | 0.106 (3)   | 0.0051 (18)  | 0.034 (2)    | -0.0042 (19) |
| C17 | 0.0722 (18) | 0.080 (2)   | 0.104 (2)   | 0.0020 (15)  | 0.0115 (17)  | 0.0141 (19)  |
| C18 | 0.0678 (16) | 0.0799 (19) | 0.0685 (16) | -0.0092 (14) | 0.0003 (13)  | 0.0102 (14)  |
| C19 | 0.0559 (13) | 0.0696 (15) | 0.0516 (12) | -0.0148 (11) | 0.0097 (10)  | 0.0071 (11)  |
| C20 | 0.0832 (19) | 0.0736 (18) | 0.0721 (17) | -0.0086 (14) | 0.0235 (15)  | -0.0016 (14) |
| C21 | 0.0767 (19) | 0.079 (2)   | 0.109 (3)   | -0.0037 (16) | 0.0346 (18)  | 0.0059 (18)  |
| C22 | 0.0663 (17) | 0.0722 (19) | 0.122 (3)   | -0.0099 (14) | 0.0109 (19)  | 0.0084 (19)  |
| C23 | 0.0765 (18) | 0.0679 (17) | 0.085 (2)   | -0.0096 (14) | -0.0043 (16) | -0.0052 (15) |
| C24 | 0.0690 (15) | 0.0647 (15) | 0.0618 (15) | -0.0022 (12) | 0.0025 (12)  | -0.0003 (12) |

## Geometric parameters (Å, °)

| Zn1—O2 | 1.962 (2) | C7—F2    | 1.386 (5)  |
|--------|-----------|----------|------------|
| Zn1—O3 | 1.976 (3) | С7—Н7А   | 0.9300     |
| Zn1—N3 | 2.056 (2) | C8—C9    | 1.542 (5)  |
| Zn1—N1 | 2.069 (2) | C9—C10   | 1.360 (5)  |
| Zn1—O4 | 2.551 (3) | C9—C14   | 1.365 (4)  |
| Zn1—O1 | 2.781 (3) | C10—F3   | 1.353 (10) |
| O1—C1  | 1.219 (3) | C10—C11  | 1.359 (6)  |
| O2—C1  | 1.268 (3) | C10—H10A | 0.9300     |
| O3—C8  | 1.252 (3) | C11—C12  | 1.339 (7)  |
| O4—C8  | 1.204 (4) | C11—H11A | 0.9300     |
| N1—C19 | 1.347 (3) | C12—C13  | 1.368 (7)  |
| N1—C15 | 1.352 (4) | C12—H12A | 0.9300     |
| N2—C19 | 1.340 (4) | C13—C14  | 1.372 (6)  |
| N2—H2A | 0.8599    | C13—H13A | 0.9300     |
| N2—H2B | 0.8603    | C14—F4   | 1.291 (5)  |
| N3—C24 | 1.346 (3) | C14—H14A | 0.9300     |
|        |           |          |            |

| N3—C20     | 1.353 (4)   | C15—C16      | 1.344 (5) |
|------------|-------------|--------------|-----------|
| N4—C24     | 1.324 (4)   | C15—H15A     | 0.9300    |
| N4—H4B     | 0.8601      | C16—C17      | 1.404 (5) |
| N4—H4C     | 0.8601      | C16—H16A     | 0.9300    |
| C1—C2      | 1.495 (4)   | C17—C18      | 1.345 (5) |
| C2—C3      | 1.380 (4)   | C17—H17A     | 0.9300    |
| C2—C7      | 1.386 (5)   | C18—C19      | 1.416 (4) |
| C3—C4      | 1.395 (6)   | C18—H18A     | 0.9300    |
| C3—F1      | 1.506 (8)   | C20—C21      | 1.367 (4) |
| С3—НЗА     | 0.9300      | C20—H20A     | 0.9300    |
| C4—C5      | 1.347 (8)   | C21—C22      | 1.380 (5) |
| C4—H4A     | 0.9300      | C21—H21A     | 0.9300    |
| C5—C6      | 1.327 (8)   | C22—C23      | 1.349 (5) |
| С5—Н5А     | 0.9300      | C22—H22A     | 0.9300    |
| C6—C7      | 1.375 (5)   | C23—C24      | 1.408 (4) |
| С6—Н6А     | 0.9300      | С23—Н23А     | 0.9300    |
| O2—Zn1—O3  | 137.12 (10) | C10—C9—C14   | 115.1 (3) |
| O2—Zn1—N3  | 105.09 (9)  | C10—C9—C8    | 123.6 (3) |
| O3—Zn1—N3  | 101.17 (10) | C14—C9—C8    | 121.3 (3) |
| O2—Zn1—N1  | 101.66 (10) | F3—C10—C11   | 127.2 (5) |
| O3—Zn1—N1  | 104.50 (9)  | F3—C10—C9    | 109.1 (5) |
| N3—Zn1—N1  | 103.33 (8)  | C11—C10—C9   | 123.1 (4) |
| O2—Zn1—O4  | 87.86 (9)   | C11—C10—H10A | 118.5     |
| O3—Zn1—O4  | 55.12 (9)   | С9—С10—Н10А  | 118.5     |
| N3—Zn1—O4  | 97.91 (10)  | C12—C11—C10  | 120.3 (4) |
| N1—Zn1—O4  | 153.41 (10) | C12—C11—H11A | 119.9     |
| C1—O2—Zn1  | 112.85 (18) | C10-C11-H11A | 119.9     |
| C8—O3—Zn1  | 104.1 (2)   | C11—C12—C13  | 119.7 (5) |
| C19—N1—C15 | 118.1 (2)   | C11—C12—H12A | 120.2     |
| C19—N1—Zn1 | 127.21 (19) | C13—C12—H12A | 120.2     |
| C15—N1—Zn1 | 114.31 (18) | C12—C13—C14  | 118.3 (4) |
| C19—N2—H2A | 120.0       | C12—C13—H13A | 120.8     |
| C19—N2—H2B | 120.0       | C14—C13—H13A | 120.8     |
| H2A—N2—H2B | 120.0       | F4—C14—C9    | 119.4 (4) |
| C24—N3—C20 | 118.5 (2)   | F4—C14—C13   | 116.6 (4) |
| C24—N3—Zn1 | 126.11 (19) | C9—C14—C13   | 123.5 (4) |
| C20—N3—Zn1 | 115.36 (18) | C9—C14—H14A  | 118.2     |
| C24—N4—H4B | 120.0       | C13—C14—H14A | 118.2     |
| C24—N4—H4C | 120.0       | C16—C15—N1   | 124.5 (3) |
| H4B—N4—H4C | 120.0       | C16—C15—H15A | 117.8     |
| O1—C1—O2   | 121.8 (3)   | N1-C15-H15A  | 117.8     |
| O1—C1—C2   | 121.2 (3)   | C15—C16—C17  | 117.5 (3) |
| O2—C1—C2   | 117.0 (2)   | C15—C16—H16A | 121.2     |
| C3—C2—C7   | 116.6 (3)   | C17—C16—H16A | 121.2     |
| C3—C2—C1   | 121.1 (3)   | C18—C17—C16  | 119.9 (3) |
| C7—C2—C1   | 122.3 (3)   | C18—C17—H17A | 120.1     |
| C2—C3—C4   | 121.6 (4)   | С16—С17—Н17А | 120.1     |
| C2—C3—F1   | 114.6 (4)   | C17—C18—C19  | 119.8 (3) |
| C4—C3—F1   | 123.6 (5)   | C17—C18—H18A | 120.1     |

| С2—С3—НЗА     | 119.2       | C19—C18—H18A    | 120.1       |
|---------------|-------------|-----------------|-------------|
| С4—С3—НЗА     | 119.2       | N2-C19-N1       | 118.8 (2)   |
| C5—C4—C3      | 118.2 (4)   | N2-C19-C18      | 121.0 (2)   |
| C5—C4—H4A     | 120.9       | N1-C19-C18      | 120.2 (3)   |
| C3—C4—H4A     | 120.9       | N3—C20—C21      | 123.5 (3)   |
| C6—C5—C4      | 122.7 (5)   | N3—C20—H20A     | 118.2       |
| С6—С5—Н5А     | 118.7       | C21—C20—H20A    | 118.2       |
| C4—C5—H5A     | 118.7       | C20—C21—C22     | 117.8 (3)   |
| C5—C6—C7      | 119.5 (5)   | C20—C21—H21A    | 121.1       |
| С5—С6—Н6А     | 120.3       | C22—C21—H21A    | 121.1       |
| С7—С6—Н6А     | 120.3       | C23—C22—C21     | 120.0 (3)   |
| C6—C7—F2      | 116.7 (4)   | C23—C22—H22A    | 120.0       |
| C6—C7—C2      | 121.5 (4)   | C21—C22—H22A    | 120.0       |
| F2—C7—C2      | 121.8 (3)   | C22—C23—C24     | 120.4 (3)   |
| С6—С7—Н7А     | 119.3       | C22—C23—H23A    | 119.8       |
| С2—С7—Н7А     | 119.3       | C24—C23—H23A    | 119.8       |
| 04—C8—O3      | 122.8 (3)   | N4—C24—N3       | 119.0 (3)   |
| 04—C8—C9      | 121.5 (3)   | N4—C24—C23      | 121.2 (3)   |
| 03—C8—C9      | 115.6 (3)   | N3—C24—C23      | 119.8 (3)   |
| O3—Zn1—O2—C1  | 51.4 (3)    | C3—C2—C7—F2     | 177.7 (3)   |
| N3—Zn1—O2—C1  | 177.2 (2)   | C1—C2—C7—F2     | -0.7 (5)    |
| N1—Zn1—O2—C1  | -75.3 (2)   | Zn1—O4—C8—O3    | 2.2 (3)     |
| O4—Zn1—O2—C1  | 79.6 (2)    | Zn1—O4—C8—C9    | -173.4 (3)  |
| O2—Zn1—O3—C8  | 36.5 (3)    | Zn1—O3—C8—O4    | -2.9 (4)    |
| N3—Zn1—O3—C8  | -90.5 (2)   | Zn1—O3—C8—C9    | 173.00 (19) |
| N1—Zn1—O3—C8  | 162.39 (19) | O4—C8—C9—C10    | 142.4 (4)   |
| O4—Zn1—O3—C8  | 1.38 (19)   | O3—C8—C9—C10    | -33.5 (4)   |
| O2—Zn1—O4—C8  | -158.3 (2)  | O4—C8—C9—C14    | -34.3 (5)   |
| O3—Zn1—O4—C8  | -1.4 (2)    | O3—C8—C9—C14    | 149.8 (3)   |
| N3—Zn1—O4—C8  | 96.7 (2)    | C14—C9—C10—F3   | -170.2 (6)  |
| N1—Zn1—O4—C8  | -46.2 (3)   | C8—C9—C10—F3    | 12.9 (7)    |
| O2—Zn1—N1—C19 | 135.2 (2)   | C14—C9—C10—C11  | 1.1 (6)     |
| O3—Zn1—N1—C19 | -10.5 (2)   | C8—C9—C10—C11   | -175.8 (4)  |
| N3—Zn1—N1—C19 | -116.0 (2)  | F3-C10-C11-C12  | 169.1 (8)   |
| O4—Zn1—N1—C19 | 26.1 (3)    | C9-C10-C11-C12  | -0.6 (7)    |
| O2—Zn1—N1—C15 | -37.3 (2)   | C10-C11-C12-C13 | -1.3 (8)    |
| O3—Zn1—N1—C15 | 177.0 (2)   | C11—C12—C13—C14 | 2.6 (7)     |
| N3—Zn1—N1—C15 | 71.5 (2)    | C10-C9-C14-F4   | 172.2 (4)   |
| O4—Zn1—N1—C15 | -146.4 (2)  | C8—C9—C14—F4    | -10.8 (6)   |
| O2—Zn1—N3—C24 | 4.1 (2)     | C10-C9-C14-C13  | 0.2 (5)     |
| O3—Zn1—N3—C24 | 149.9 (2)   | C8—C9—C14—C13   | 177.2 (3)   |
| N1—Zn1—N3—C24 | -102.1 (2)  | C12—C13—C14—F4  | -174.2 (5)  |
| O4—Zn1—N3—C24 | 94.0 (2)    | C12—C13—C14—C9  | -2.0 (6)    |
| O2—Zn1—N3—C20 | -174.6 (2)  | C19—N1—C15—C16  | -1.8 (4)    |
| O3—Zn1—N3—C20 | -28.8 (2)   | Zn1—N1—C15—C16  | 171.4 (3)   |
| N1—Zn1—N3—C20 | 79.2 (2)    | N1-C15-C16-C17  | 0.2 (5)     |
| O4—Zn1—N3—C20 | -84.7 (2)   | C15-C16-C17-C18 | 0.7 (5)     |
| Zn1—O2—C1—O1  | -0.8 (4)    | C16—C17—C18—C19 | -0.1 (5)    |
| Zn1—O2—C1—C2  | 179.51 (18) | C15—N1—C19—N2   | -176.8 (2)  |
|               |             |                 |             |

| O1—C1—C2—C3 | 0.7 (4)    | Zn1—N1—C19—N2   | 10.9 (3)     |
|-------------|------------|-----------------|--------------|
| O2—C1—C2—C3 | -179.6 (3) | C15—N1—C19—C18  | 2.4 (4)      |
| O1—C1—C2—C7 | 179.1 (3)  | Zn1—N1—C19—C18  | -169.80 (19) |
| O2—C1—C2—C7 | -1.3 (4)   | C17—C18—C19—N2  | 177.7 (3)    |
| C7—C2—C3—C4 | 0.5 (5)    | C17-C18-C19-N1  | -1.6 (4)     |
| C1—C2—C3—C4 | 178.9 (3)  | C24—N3—C20—C21  | 1.2 (4)      |
| C7—C2—C3—F1 | -175.1 (4) | Zn1—N3—C20—C21  | 180.0 (3)    |
| C1-C2-C3-F1 | 3.3 (5)    | N3—C20—C21—C22  | -1.2 (5)     |
| C2—C3—C4—C5 | -0.5 (6)   | C20—C21—C22—C23 | 0.6 (5)      |
| F1-C3-C4-C5 | 174.7 (5)  | C21—C22—C23—C24 | 0.1 (5)      |
| C3—C4—C5—C6 | 0.7 (8)    | C20—N3—C24—N4   | -178.8 (3)   |
| C4—C5—C6—C7 | -0.8 (8)   | Zn1—N3—C24—N4   | 2.5 (4)      |
| C5—C6—C7—F2 | -177.7 (4) | C20—N3—C24—C23  | -0.5 (4)     |
| С5—С6—С7—С2 | 0.7 (6)    | Zn1—N3—C24—C23  | -179.2 (2)   |
| C3—C2—C7—C6 | -0.5 (5)   | C22-C23-C24-N4  | 178.2 (3)    |
| C1—C2—C7—C6 | -178.9 (3) | C22—C23—C24—N3  | -0.1 (5)     |

### Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D -\!\!\!-\!\!\!\!- \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|---------------------------|-------------|--------------|--------------|----------------------------------------------------------------------------|
| N2—H2A···O3               | 0.86        | 2.06         | 2.881 (3)    | 159                                                                        |
| N2—H2B···O1 <sup>i</sup>  | 0.86        | 2.03         | 2.864 (3)    | 162                                                                        |
| N4—H4B···O2               | 0.86        | 2.02         | 2.838 (4)    | 159                                                                        |
| N4—H4B…F2                 | 0.86        | 2.52         | 3.143 (5)    | 130                                                                        |
| N4—H4C···O4 <sup>ii</sup> | 0.86        | 2.03         | 2.884 (4)    | 175                                                                        |
| C5—H5A…F4 <sup>iii</sup>  | 0.93        | 2.34         | 3.147 (6)    | 144                                                                        |
| C20—H20A…F3 <sup>iv</sup> | 0.93        | 2.47         | 3.244 (10)   | 141                                                                        |

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+2, y-1/2, -z+1/2; (iv) -x+1, -y, -z+1.



Fig. 1

Fig. 2

